祖冲之是我国______________时期著名的数学家、天文学家。
2021-11-24 09:30 广东人事考试网 来源:广东华图教育
祖冲之是我国______________时期著名的数学家、天文学家。
A.三国
B.东晋
C.北魏
D.南朝
正确答案
祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
解析同上
以上是关于祖冲之是我国______________时期著名的数学家、天文学家。 的参考答案及解析。建议大家看完问题先作答、再查看答案哦!
华图试题检索系统(https://gd.huatu.com/zt/questionqy/)是服务于考公试卷题目解答、职业考试试题解析的专业找答案系统,千万题库供用户查询,针对不同场景需求,提供文字搜题方式,秒出解析答案,实现搜题最佳体验。
试题答案何处找,下方扫码见分晓!

华图题库旨在为考生提供高效的智能备考服务,全面覆盖公务员考试、事业单位、教师招聘、职业资格、医卫类、计算机类等领域,为您提供行政职业能力测验、公共基础知识、教育基础知识、职业能力倾向测验及综合应用能力等相关试题答案解析。拥有优质丰富的学习资料和备考全阶段的高效服务,助您不断前行!
你以为刷题就是不停的找题去做?NO,NO,NO!刷题也是有技巧的。高效地刷题,让你事半功倍。
点击下载华图在线APP体验更佳。关注广东华图教育微信gdhtgwy,政策问题实时答,考试信息不漏看。
特别说明:华图题库平台所收集的试题内容来源于互联网,仅供学习交流使用,不构成商业目的。版权归原作者所有,如涉及作品内容、版权和其它问题,请与我们取得联系,我们将在第一时间处理,维护您的合法权益。
(编辑:广东华图)



