广东公务员考试:牛吃草问题
2012-05-24 10:29 广东公务员考试网 来源:广东人事考试网
广东公务员考试:牛吃草问题由广东公务员考试网行测栏目由提供,更多关于2012广东省考,华图公务员,广东华图,广东公务员,广东公务员行测的内容,请关注广东公务员考试频道/广东公务员考试网!
牛顿问题,因由牛顿提出而得名,也有人称这一类问题叫做牛吃草问题。英国著名的物理学家学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?
牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。解题环节主要有四步:
1、求出每天长草量;
2、求出牧场原有草量;
3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);
4、最后求出可吃天数
想:这片草地天天以同样的速度生长是分析问题的难点。把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。求出了这个条件,把所有头牛分成两部分来研究,用其中头吃掉新长出的草,用其余头数吃掉原有的草,即可求出全部头牛吃的天数。
解:新长出的草供几头牛吃1天:
(10×22-16×10)÷(22-10)
=(220-160)÷12
=60÷12
=5(头)
这片草供25头牛吃的天数:
(10-5)×22÷(25-5)
=5×22÷20
=5.5(天)
答:供25头牛可以吃5.5天。
牛顿问题的难点在于草每天都在不断生长,草的数量都在不断变化。解答这类题目的关键是想办法从变化中找出不变量,我们可以把总草量看成两部分的和,即原有的草量加新长的草量。显而易见,原有的草量是一定的,新长的草量虽然在变,但如果是匀速生长,我们也能找到另一个不变量——每天(每周)新长出的草的数量。其实这种牛吃草问题的核心公式是:原有草量=(牛数-单位时间长草量可供应的牛的数量)×天数
以上是广东公务员考试:牛吃草问题的全部内容,更多关于2012广东省考,华图公务员,广东华图,广东公务员,广东公务员考试快讯信息敬请加入广东公务员考试群,及关注广东公务员考试网/广东公务员考试频道。
关键词阅读: 广东公务员 广东华图 2012广东省考 华图公务员
(编辑:广东华图)
线上微信客服
广东华图公众号